An Empirical Comparative Analysis Using Machine Learning Techniques for Liver Disease Prediction

Author:

Alghobiri Mohammed1,Khan Hikmat Ullah2,Mahmood Ahsan2

Affiliation:

1. King Khalid University, Abdha, Saudi Arabia

2. COMSATS University Islamabad, Pakistan

Abstract

The human liver is one of the major organs in the body and liver disease can cause many problems in human live. Due to the increase in liver disease, various data mining techniques are proposed by the researchers to predict the liver disease. These techniques are improving day by day in order to predict and diagnose the liver disease in human. In this paper, real-world liver disease dataset is incorporated for diagnosing liver disease in human body. For this purpose, feature selection models are used to select a number of features that best are the most important feature to diagnose the liver disease. After selecting features and splitting data for training and testing, different classification algorithms in terms of naïve Bayes, supervised vector machine, decision tree, k near neighbor and logistic regression models to diagnose the liver disease in human body. The results are cross-validated by tenfold cross validation methods and achieve an accuracy as good as 93%.

Publisher

IGI Global

Subject

Information Systems and Management,Information Systems,Medicine (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Integrated Ensemble Learning Framework for Predicting Liver Disease;International Journal of Online and Biomedical Engineering (iJOE);2023-09-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3