Fully Automatic Detection and Segmentation Approach for Juxta-Pleural Nodules From CT Images
Author:
Affiliation:
1. KSIT, Bengaluru, India
2. RNSIT, Bengaluru, India
Abstract
Early detection of all types of lung nodules with different characters in medical modality images using computer-aided detection is the best acceptable remedy to save the lives of lung cancer sufferers. But accuracy of different types of nodule detection rates is based on chosen segmented procedures for parenchyma and nodules. Separation of pleural from juxta-pleural nodules (JPNs) is difficult as intensity of pleural and attached nodule is similar. This research paper proposes a fully automated method to detect and segment JPNs. In the proposed method, lung parenchyma is segmented using iterative thresholding algorithm. To improve the nodules detection rate separation of connected lung lobes, an algorithm is proposed to separate connected left and right lung lobes. The new method segments JPNs based on lung boundary pixels extraction, concave points extraction, and separation of attached pleural from nodule. Validation of the proposed method was performed on LIDC-CT images. The experimental result confirms that the developed method segments the JPNs with less computational time and high accuracy.
Publisher
IGI Global
Subject
Information Systems and Management,Information Systems,Medicine (miscellaneous)
Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Lung Parenchyma Segmentation from CT Images with a Fully Automatic Method;Multimedia Tools and Applications;2023-07-04
2. Lung Nodule Segmentation with a Region-Based Fast Marching Method;Sensors;2021-03-09
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3