Automated Text Detection and Recognition in Annotated Biomedical Publication Images

Author:

De Soumya1,Stanley R. Joe1,Cheng Beibei1,Antani Sameer2,Long Rodney2,Thoma George2

Affiliation:

1. Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, Missouri, USA

2. Lister Hill National Center for Biomedical Communications, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA

Abstract

Images in biomedical publications often convey important information related to an article's content. When referenced properly, these images aid in clinical decision support. Annotations such as text labels and symbols, as provided by medical experts, are used to highlight regions of interest within the images. These annotations, if extracted automatically, could be used in conjunction with either the image caption text or the image citations (mentions) in the articles to improve biomedical information retrieval. In the current study, automatic detection and recognition of text labels in biomedical publication images was investigated. This paper presents both image analysis and feature-based approaches to extract and recognize specific regions of interest (text labels) within images in biomedical publications. Experiments were performed on 6515 characters extracted from text labels present in 200 biomedical publication images. These images are part of the data set from ImageCLEF 2010. Automated character recognition experiments were conducted using geometry-, region-, exemplar-, and profile-based correlation features and Fourier descriptors extracted from the characters. Correct recognition as high as 92.67% was obtained with a support vector machine classifier, compared to a 75.90% correct recognition rate with a benchmark Optical Character Recognition technique.

Publisher

IGI Global

Subject

Information Systems and Management,Information Systems,Medicine (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhanced Characterness for Text Detection in the Wild;Proceedings of 2nd International Conference on Computer Vision & Image Processing;2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3