A Survey on Using Nature Inspired Computing for Fatal Disease Diagnosis

Author:

Kaur Prableen1,Sharma Manik1

Affiliation:

1. Department of Computer Science and Applications, DAV University, Jalandhar, India

Abstract

Genetic Algorithms (GA), Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO) and Artificial Bee Colonies (ABC) are some vital nature inspired computing (NIC) techniques. These approaches have been used in early prophecy of various diseases. This article analyzes the efficacy of various NIC techniques in diagnosing diverse critical human disorders. It is observed that GA, ACO, PSO and ABC have been successfully used in early diagnosis of different diseases. As compared to ACO, PSO and ABC algorithms, GA has been extensively used in diagnosis of ecology, cardiology and endocrinologist. In addition, from the last six years of research, it has been observed that the accuracy accomplished using GA, ACO, PSO and ABC in the early diagnosis of cancer, diabetes and cardio problems lies between 73.5%-99.7%, 70%-99.2%, 80%-98% and 76.4% to 99.98% respectively. Furthermore, ACO, PSO and ABC are found to be best suited in diagnosing lung, prostate and breast cancer respectively. Moreover, the hybrid use of NIC techniques produces better results as compared to their individual use.

Publisher

IGI Global

Subject

Management of Technology and Innovation,Information Systems

Reference81 articles.

1. Feature selection using genetic algorithm for breast cancer diagnosis: Experiment on three different datasets.;S.Aalaei;Iranian Journal of Basic Medical Sciences.,2016

2. Nature-Inspired Algorithms: State-of-Art, Problems and Prospects

3. A Medical Expert System based on Genetic Algorithm and Extreme Learning Machine for Diabetes Disease Diagnosis. International Journal of Science;S.Aishwarya;Engineering and Technology Research.,2014

4. Breast cancer diagnosis using GA feature selection and Rotation Forest

5. mRMR-ABC: A Hybrid Gene Selection Algorithm for Cancer Classification Using Microarray Gene Expression Profiling

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Überblick und Klassifizierung von auf Schwarmintelligenz basierenden naturinspirierten Rechenalgorithmen und deren Anwendungen in der Krebserkennung und -diagnose;Von der Natur inspirierte intelligente Datenverarbeitungstechniken in der Bioinformatik;2024

2. Fortschritte bei der genomischen Profilerstellung von Darmkrebs mit naturinspirierten Rechentechniken;Von der Natur inspirierte intelligente Datenverarbeitungstechniken in der Bioinformatik;2024

3. Naturinspiriertes Computing in der Brustkrebsforschung: Überblick, Perspektive und Herausforderungen der modernsten Techniken;Von der Natur inspirierte intelligente Datenverarbeitungstechniken in der Bioinformatik;2024

4. Alzheimer disease classification based on multimodel deep convolutional neural network using MRI images;PHYSICAL MESOMECHANICS OF CONDENSED MATTER: Physical Principles of Multiscale Structure Formation and the Mechanisms of Nonlinear Behavior: MESO2022;2023

5. Overview and Classification of Swarm Intelligence-Based Nature-Inspired Computing Algorithms and Their Applications in Cancer Detection and Diagnosis;Nature-Inspired Intelligent Computing Techniques in Bioinformatics;2022-11-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3