The Stability Model

Author:

Tavana Madjid1,Trevisani Dawn A.2,Dussault Jerry L.2

Affiliation:

1. Department of Business Systems and Analytics, La Salle University, Philadelphia, PA, USA

2. Resilient Synchronized Systems Branch, Air Force Research Laboratory, Rome, NY, USA

Abstract

The increasing complexity and tight coupling between people and technology in military Command and Control (C2) systems has led to greater vulnerability due to system failure. Although system vulnerabilities cannot be completely eliminated, the accidental or anticipated failures have to be thoroughly understood and guarded. Traditionally, the failure in C2 systems has been studied with resiliency and the concept of self-healing systems represented with reactive models or robustness and the concept of self-protecting systems represented with proactive models. The authors propose the stability model for simultaneous consideration of robustness and resiliency in C2 systems. Robustness and resiliency are measured with multiple criteria (i.e. repair-recovery times and repair-recovery costs). The proposed interactive framework plots the robustness and resiliency measures in a Cartesian coordinate system and derives an overall stability index for various states of the C2 system based on the theory of displaced ideals. An ideal state is formed as a composite of the best performance values and a nadir state is formed as a composite of the worst performance values exhibited by the system. Proximity to each of these performance poles is measured with the Euclidean distance. The C2 system should be as close to the ideal state as possible and as far from the nadir state as possible. The stability index is a composite measure of distance from the ideal and nadir states in the C2 system. The authors present a case study at the Air Force Research Laboratory to demonstrate the applicability of the proposed framework and exhibit the efficacy of the procedures and algorithms.

Publisher

IGI Global

Subject

Management of Technology and Innovation,Information Systems and Management,Organizational Behavior and Human Resource Management,Strategy and Management,Communication,Management Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3