Handwritten Kannada Numerals Recognition by Using Zone Features and CNN Classifier

Author:

Hallur Vishweshwarayya C.1,Hegadi Rajendra S.2,Hegadi Ravindra S.3

Affiliation:

1. Bharathiar University, Coimbatore, India

2. Indian Institute of Information Technology, Dharawad, India

3. Solapur University, Solapur, India

Abstract

The proposed system presents a pre-processing, segmentation, features extraction approach and Deep Convolutional Neural Network (DCNN) classifier for recognition of handwritten Kannada numerals. Pre-processing have different steps like median filter, gray scale to binary, normalization, thinning, skew correction and slant removal. Segmentation process contains different methods like vertical projection profile for word and novel character segmentation. Collections of best discriminable features are very important part in achieving high rate of identification in automatic numeral detection systems. Kannada is the major south Indian character verbal by about 50 million people. This article presents a well-organized and novel technique for recognition of handwritten Kannada numerals using zone and distance matrix. An appropriate feature extractor and a superior classifier play most important task in achieving high detection rate for a recognition scheme. This article determines a variety of feature extraction approaches and classification techniques which are designed to recognize handwritten numerals of Kannada script. The DCNN classifier approach is used to classify the testing samples of each Kannada handwritten numerals. The experimental result gives the acceptable performance rate.

Publisher

IGI Global

Subject

Human-Computer Interaction,Information Systems

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3