Medical Image Fusion in Wavelet and Ridgelet Domains

Author:

Bhateja Vikrant1,Krishn Abhinav1,Patel Himanshi1,Sahu Akanksha1

Affiliation:

1. Department of Electronics and Communication Engineering, Shri Ramswaroop Memorial Group of Professional Colleges, Lucknow (U.P.), India

Abstract

Medical image fusion facilitates the retrieval of complementary information from medical images and has been employed diversely for computer-aided diagnosis of life threatening diseases. Fusion has been performed using various approaches such as Pyramidal, Multi-resolution, multi-scale etc. Each and every approach of fusion depicts only a particular feature (i.e. the information content or the structural properties of an image). Therefore, this paper presents a comparative analysis and evaluation of multi-modal medical image fusion methodologies employing wavelet as a multi-resolution approach and ridgelet as a multi-scale approach. The current work tends to highlight upon the utility of these approaches according to the requirement of features in the fused image. Principal Component Analysis (PCA) based fusion algorithm has been employed in both ridgelet and wavelet domains for purpose of minimisation of redundancies. Simulations have been performed for different sets of MR and CT-scan images taken from ‘The Whole Brain Atlas'. The performance evaluation has been carried out using different parameters of image quality evaluation like: Entropy (E), Fusion Factor (FF), Structural Similarity Index (SSIM) and Edge Strength (QFAB). The outcome of this analysis highlights the trade-off between the retrieval of information content and the morphological details in finally fused image in wavelet and ridgelet domains.

Publisher

IGI Global

Subject

General Medicine

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A multibranch and multiscale neural network based on semantic perception for multimodal medical image fusion;Scientific Reports;2024-07-30

2. A Review of EEG-based Localization of Epileptic Seizure Foci: Common Points with Multimodal Fusion of Brain Data;Journal of Medical Signals & Sensors;2024-07

3. Feature fusion for medical data;Data Fusion Techniques and Applications for Smart Healthcare;2024

4. Establishment of an Effective Brain Tumor Classification System through Image Transformations and Optimization Techniques;2023 1st International Conference on Innovations in High Speed Communication and Signal Processing (IHCSP);2023-03-04

5. Effective and Accurate Diagnosis Using Brain Image Fusion;Research Anthology on Improving Medical Imaging Techniques for Analysis and Intervention;2022-09-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3