New Approach to Improve the Classification Process of Multi-Class Objects

Author:

Gafour Yacine1,Berrabah Djamel1

Affiliation:

1. EEDIS Laboratory, Djillali Liabes University, Sidi Bel Abbes, Algeria

Abstract

In recent years, several descriptors have been proposed in many image classification applications. Accelerated-KAZE (A-KAZE) is considered one of the descriptors that has shown high performance for feature extraction. A-KAZE uses a binary descriptor called modified-local difference binary, which is very efficient and invariant to changes in rotation and scale. This representation does not allow spatial information to be considered between objects in the image, which makes it possible to reduce the performances of the classification of the images. This article broaches a new approach to improve the performance of the A-KAZE descriptor for image classification. The authors first establish the connection between the A-KAZE descriptor and the bag of feature model. Then the Spatial Pyramid Matching (SPM) is adopted by exploiting the A-KAZE descriptor to reinforce its robustness by introducing spatial information. The results of the experiments on several datasets show that the A-KAZE descriptor with SPM gives very satisfactory results compared with other existing methods in the state of the art.

Publisher

IGI Global

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3