Data Warehouses and Big Data

Author:

Benkhaled Hamid Naceur1ORCID,Berrabah Djamel1,Boufares Faouzi2

Affiliation:

1. EEDIS Laboratory, University of Djillali Liabes, Sidi Bel Abbes, Algeria

2. LIPN Laboratory, Paris13 University, Paris, France

Abstract

Before the arrival of the Big Data era, data warehouse (DW) systems were considered the best decision support systems (DSS). DW systems have always helped organizations around the world to analyse their stored data and use it in making decisive decisions. However, analyzing and mining data of poor quality can give the wrong conclusions. Several data quality (DQ) problems can appear during a data warehouse project like missing values, duplicates values, integrity constrains issues and more. As a result, organizations around the world are more aware of the importance of data quality and invest a lot of money in order to manage data quality in the DW systems. On the other hand, with the arrival of BD, new challenges have to be considered like the need for collecting the most recent data and the ability to make real-time decisions. This article provides a survey about the exiting techniques to control the quality of the stored data in the DW systems and the new solutions proposed in the literature to face the new Big Data requirements.

Publisher

IGI Global

Reference43 articles.

1. Bala, M., Boussaid, O., Alimazighi, Z., & Bentayeb, F. (2014). Pfetl: vers l’intégration de données massives dans les fonctionnalités d’etl. In INFORSID (pp. 61–76). Academic Press.

2. Integrating Big Data: A Semantic Extract-Transform-Load Framework

3. Data and Information Quality

4. Social big data: Recent achievements and new challenges

5. Benkhaled, H. N., & Berrabah, D. (2019). Data Quality Management For Data Warehouse Systems: State Of The Art. In Proceedings of JERI 2019. Academic Press.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Potentials of digital twin system for analyzing travel behavior decisions;Travel Behaviour and Society;2025-01

2. A New Approach for Formal and Coherent Ontology Alignment;International Journal of Organizational and Collective Intelligence;2022-10-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3