A Semantically Enhanced Knowledge Discovery Method for Knowledge Graph Based on Adjacency Fuzzy Predicates Reasoning

Author:

Li Pu1ORCID,Zhou Guohao1,Yin Zhilei1,Chen Rui1,Zhang Suzhi1

Affiliation:

1. Zhengzhou University of Light Industry, China

Abstract

Discover the deep semantics from the massively structured data in knowledge graph and provide reasonable explanations are a series of important foundational research issues of artificial intelligence. However, the deep semantics hidden between entities in knowledge graph cannot be well expressed. Moreover, considering many predicates express fuzzy relationships, the existing reasoning methods cannot effectively deal with these fuzzy semantics and interpret the corresponding reasoning process. To counter the above problems, in this article, a new interpretable reasoning schema is proposed by introducing fuzzy theory. The presented method focuses on analyzing the fuzzy semantic between related entities in a knowledge graph. By annotating the fuzzy semantic features of adjacency predicates, a novel semantic reasoning model is designed to realize the fuzzy semantic extension over knowledge graph. The evaluation, based on both visualization and query experiments, shows that this proposal has advantages over the initial knowledge graph and can discover more valid semantic information.

Publisher

IGI Global

Subject

Computer Networks and Communications,Information Systems

Reference40 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3