Enhanced Safety in Multi-Lane Automated Driving Through Semantic Features
Author:
Affiliation:
1. Hunan Biological and Electromechanical Polytechnic, China
2. State Grid Hunan Electric Power Company Limited, China
3. Lebanese American University, Lebanon
Abstract
Accurate lane detection is crucial for the safety and reliability of multi-lane automated driving, where the complexity of traffic scenarios is significantly heightened. Leveraging the semantic segmentation capabilities of deep learning, we develop a modified U-Net architecture tailored for the precise identification of lane lines. Our model is trained and validated on a robust dataset from Kaggle, comprising 2975 annotated training images and 500 test images with masks. Empirical results demonstrate the model's proficiency, achieving a peak accuracy of 95.19% and a Dice score of 0.928, indicating exceptional precision in segmenting lanes. These results represent a notable contribution to the enhancement of safety in automated driving systems.
Publisher
IGI Global
Reference26 articles.
1. Dynamic lane-changing game model in mixed autonomous and human-driven vehicle environment
2. SpinNet: Spinning convolutional network for lane boundary detection
3. Multi-lane modelling using convolutional neural networks and conditional random fields
4. Road Lane Detection Robust to Shadows Based on a Fuzzy System Using a Visible Light Camera Sensor
5. Road Lane Detection by Discriminating Dashed and Solid Road Lanes Using a Visible Light Camera Sensor
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3