A Cloud-Edge Collaborative Gaming Framework Using AI-Powered Foveated Rendering and Super Resolution

Author:

Tang Xinkun1ORCID,Xu Ying1ORCID,Ouyang Feng1,Zhu Ligu2,Peng Bo2

Affiliation:

1. Academy of Broadcasting Science, China

2. Communication University of China, China

Abstract

Cloud gaming (CG) has gradually gained popularity. By leveling shared computing resources on the cloud, CG technology allows those without expensive hardware to enjoy AAA games using a low-end device. However, the bandwidth requirement for streaming game video is high, which can cause backbone network congestion for large-scale deployment and expensive bandwidth bills. To address this challenge, the authors proposed an innovative edge-assisted computing architecture that collaboratively uses AI-powered foveated rendering (FR) and super-resolution (SR). Using FR, the cloud server can stream gaming video in lower resolution, significantly reducing the transmitted data volume. The edge server will then upscale the video using a game-specific SR model, recovering the quality of the video, especially for the areas players pay the most attention. The authors built a prototype system called FRSR and did thorough, objective comparative experiments to demonstrate that this architecture can reduce bandwidth usage by 39.47% compared with classic CG implementation for similar perceived quality.

Publisher

IGI Global

Subject

Computer Networks and Communications,Information Systems

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A brain magnetic resonance image compression technique using wavelet-based SPIHT algorithm and capsule autoencoder;Multimedia Tools and Applications;2024-05-21

2. “Super Cloud” and the Sustainability of Business;Advances in Logistics, Operations, and Management Science;2024-04-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3