Research on the Generation of Patented Technology Points in New Energy Based on Deep Learning

Author:

Yang Haixiang1ORCID,You Xindong1,Lv Xueqiang1,Xu Ge2

Affiliation:

1. Beijing Information Science and Technology University, China

2. Minjiang University, China

Abstract

Effective extraction of patent technology points in new energy fields is profitable, which motivates technological innovation and facilitates patent transformation and application. However, since patent data exists the ununiform distribution of technology points information, long length of term, and long sentences, technology point extraction faces the dilemmas of poor readability and logic confusion. To mitigate these problems, the article proposes a method to generate patent technology points called IGPTP—a two-stage strategy, which fuses the advantage of extractive and generative ways. IGPTP utilizes the RoBERTa+CNN model to obtain the key sentences of text and takes the output as input of UNILM (unified pre-trained language model). Simultaneously, it takes a multi-strategies integration technique to enhance the quality of patent technology points by combining the copy mechanism and external knowledge guidance model. Substantial experimental results manifest that IGPTP outperforms the current mainstream models, which can generate more coherent and richer text.

Publisher

IGI Global

Subject

Computer Networks and Communications,Information Systems

Reference36 articles.

1. Efficient Local Cloud-Based Solution for Liver Cancer Detection Using Deep Learning.;B. C.Anil;International Journal of Cloud Applications and Computing,2022

2. Devlin, J., Chang, M.-W., & Lee, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.

3. Unified language model pre-training for natural language understanding and generation.;L.Dong;Advances in Neural Information Processing Systems,2019

4. Enhancing Text Generation via Parse Tree Embedding

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3