Efficient Workflow Scheduling in Edge Cloud-Enabled Space-Air-Ground-Integrated Information Systems

Author:

Jiang Yunke1,Sun Xiaojuan1

Affiliation:

1. Aerospace Information Research Institute, China

Abstract

To address the challenges posed by the dynamism, high latency, and resource scarcity in integrated air-space-ground hybrid edge cloud environments on task completion times and node load, we designed a task scheduling system for scenarios involving the transmission and processing of interdependent tasks. This system integrates a graph neural network with attention mechanism and deep reinforcement learning. Specifically, we employ a graph encoder to extract features from DAG tasks and resources. Task scheduling solutions for dynamic environments are then generated using attention mechanism-equipped graph decoder, which are subsequently optimized based on performance metrics through the use of an Advantage Actor-Critic algorithm. Experimental results indicate that this algorithm performs well in terms of completion time and node load balance across tasks with different workflow structures, demonstrating its adaptability to highly dynamic edge cloud environments.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3