Long-Term Synchronization of Hybrid Sensors Networks

Author:

Madhushri Priyanka1,Jovanov Emil2

Affiliation:

1. Stanley Black and Decker, Atlanta, USA

2. University of Alabama in Huntsville, Huntsville, USA

Abstract

This article presents synchronization of a hybrid distributed sensor network with wired and wireless sensors. Authors present an implementation of a sleep monitoring system as a hybrid sensor network that combines wireless inertial sensors controlled by a custom smartphone application as an extension of the polysomnographic (PSG) monitor to improve user's comfort. The authors developed an original method of synchronization of wireless sensor data with the PSG records using an auxiliary audio synchronization signal generated by the smartphone. The timestamps on the smartphone are synchronized with the timestamps from inertial sensors, and time of generated synchronization pulses recorded by the PSG. The individual data streams were synchronized using the Dynamic Time Warping (DTW) mechanism. Authors present the system organization and the results of analysis of the whole night monitoring, including the analysis of channel reliability and clock drift. Clock drift has been reduced from 10-30 seconds to 5.1± 3 milliseconds which is with an improved accuracy as compare to existing methods.

Publisher

IGI Global

Subject

General Computer Science

Reference33 articles.

1. Android. (2015). Bluetooth Low Energy using GATT. Retrieved January 10, 2016, from https://developer.android.com/guide/topics/connectivity/bluetooth-le.html

2. Quantitative and Qualitative Analysis of Time Synchronization Protocols for Wireless Sensor Networks

3. Time synchronization for ZigBee networks

4. Probabilistic clock synchronization

5. Scaling and time warping in time series querying

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3