A Hybrid Hindi Printed Document Classification System Using SVM and Fuzzy

Author:

Puri Shalini1ORCID,Singh Satya Prakash1

Affiliation:

1. Birla Institute of Technology, Mesra, Ranchi, India

Abstract

This article introduces a new advanced tri-layered segmentation and bi-leveled-classifier-based Hindi printed document classification system, which categorizes imaged documents into pre-defined mutually exclusive categories by using SVM and Fuzzy matching at character and document classifications, respectively. During training, the improved and noise-free image is segmented into lines and words by profiling. Then it obtains Shirorekha Less (SL) isolated characters along with upper, left and right modifier components from the SL words. These components use their locations and inter character-modifier component distance to get associate with their corresponding characters only. Further, confidence values of all characters are calculated with SVM training and all characters are mapped into Romanized labels to generate the words. Finally, documents are classified by Fuzzy based matching of Romanized detected words and predefined classes. The average execution times of SL characters are 0.22675 sec. and 0.20375 sec. and classification accuracy are 74.61% and 80.73% for training and testing, respectively.

Publisher

IGI Global

Subject

General Computer Science

Reference50 articles.

1. Generalization of Hindi OCR Using Adaptive Segmentation and Font Files

2. Text line script identification for a tri-lingual document

3. A survey on optical character recognition for Bangla and Devanagari scripts

4. Review on extraction techniques for images, text lines and keywords from document images.;S. L.Bagadkar;International Conference on Computational and Computing Research,2014

5. Two-stage approach for word-wise script identification.;S.Chanda;10th International Conference on Document Analysis and Recognition,2009

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3