A Study on Developing Cardiac Signals Recording Framework (CARDIF) Using a Reconfigurable Real-Time Embedded Processor

Author:

Arun Uma1,Sriraam Natarajan1ORCID

Affiliation:

1. MSRIT, Bengaluru, India

Abstract

Due to recent developments in technology, there is a significant growth in healthcare monitoring systems. The most widely monitored human physiological parameters is electrocardiogram (ECG) which is useful for inferring the physiological state of humans. Most of the existing multi-channel ECG acquisition systems were not accessible in resource-constrained settings. This research study proposes a cardiac signal recording framework (CARDIF) using a reconfigurable input-output real-time embedded processor by employing a virtual instrumentation platform. The signal acquisition was configured using Lab VIEW virtual instrumentation block sets. A graphical user interface (GUI) was developed for real-time data acquisition and visualization. The time domain heart rate variability (HRV) statistics were calculated using CARDIF, and the same were compared with a clinical grade 12-channel ECG system. The quality of the acquired signals obtained from the proposed and standard systems was measured and compared by calculating signal-to-noise ratio (SNR). The proposed CARDIF was evaluated qualitatively by visual inspection by a clinician and quantitatively by fidelity measures and vital parameters estimation. The results are quite promising and can be extended for clinical validations.

Publisher

IGI Global

Subject

Psychiatry and Mental health,Health Policy,Neuropsychology and Physiological Psychology

Reference20 articles.

1. A smart wearable system for short-term cardiovascular risk assessment with emotional dynamics

2. Study and investigation of continuous cardiac monitoring using vernier EKG with myRIO processor

3. Study of Real-Time Cardiac Monitoring System

4. Mobile healthcare applications: System design review, critical issues and challenges;M. M.Baig;Australasian Physical & Engineering Sciences in Medicine,2016

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3