Survey of State-of-Art in Green Cloud Computing

Author:

Ahuja Sanjay P.1,Muthiah Karthika1

Affiliation:

1. School of Computing, University of North Florida, Jacksonville, FL, USA

Abstract

Cloud computing is witnessing tremendous growth at one time when climate change and reducing emissions from energy use is gaining attention. With the growth of the cloud, however, comes an increase in demand for energy. There is growing global awareness about reducing greenhouse gas emissions and healthy environments. Green computing in general aims to reduce the consumption of energy and carbon emission and also to recycle and reuse the energy usage in a beneficial and efficient way. Energy consumption is a bottleneck in internet computing technology. Green cloud computing related technology arose as an improvement to cloud computing. Cloud data centers consume inordinate amounts of energy and have significant CO2 emissions as they have a huge network of servers. Furthermore, these data centers are tightly linked to provide high performance services, outsourcing and sharing resources to multiple users through the internet. This paper gives an overview about green cloud computing and its evolution, surveys related work, discusses associated integrated green cloud architecture – Green Cloud Framework, innovations, and technologies, and highlights future work and challenges that need to be addressed to sustain an eco-friendly cloud computing environment that is poised for significant growth.

Publisher

IGI Global

Subject

General Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Green Energy Cloud -Taxonomy, Infrastructure, Platform, and Services;2023 IEEE International Conference on Service-Oriented System Engineering (SOSE);2023-07

2. Cloud Computing;Emerging Computing Paradigms;2022-07-11

3. Environmental Sustainability in the Computer Industry for Competitive Advantage;Research Anthology on Business Continuity and Navigating Times of Crisis;2022

4. Cloud Computing, Green Computing, and Green ICT;Research Anthology on Architectures, Frameworks, and Integration Strategies for Distributed and Cloud Computing;2021

5. K‐ear: Extracting data access periodic characteristics for energy‐aware data clustering and storing in cloud storage systems;Concurrency and Computation: Practice and Experience;2020-11-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3