Effective Selection of Entities From Heterogeneous and Large Resources Using a Cooperative Neuro-Fuzzy System

Author:

Sajja Priti Srinivas1ORCID,Mishra Rasendu2

Affiliation:

1. Sardar Patel University, India

2. MCA Department, India

Abstract

This paper focuses on using the cooperative neuro-fuzzy system for the effective and customised selection of entities from large and heterogeneous resources by presenting a general architecture. An experiment is carried out with the fast-moving consumer goods to prove the utility of the architecture. It is observed that most consumers go for the frequent purchase of fast-moving consumer items. Further, various brands, costs, discounts, schemes, quantities, and reviews might make it challenging. Hence, such decisions need to be intelligent and practically feasible in terms of time and effort. The paper discusses neural networks to categorise the entities, type-1 & 2 fuzzy membership functions with rules, training sets, and graphical views of the fuzzy rules and the experiment details. Besides the generic approach and experiment, the paper also discusses the work done so far with their limitations and applications in other domains. At the end, the paper presents the limitations and possible future enhancements.

Publisher

IGI Global

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3