Missing Value Imputation Using ANN Optimized by Genetic Algorithm

Author:

Mishra Anjana1,Naik Bighnaraj2,Srichandan Suresh Kumar3

Affiliation:

1. Department of IT, C.V.Raman College of Engineering, Mahura, India

2. Department of Computer Application, Veer Surendra Sai University of Technology, Burla, India

3. Department of IT, Veer Surendra Sai University of Technology, Burla, India

Abstract

Missing value arises in almost all serious statistical analyses and creates numerous problems in processing data in databases. In real world applications, information may be missing due to instrumental errors, optional fields and non-response to some questions in surveys, data entry errors, etc. Most of the data mining techniques need analysis of complete data without any missing information and this induces researchers to develop efficient methods to handle them. It is one of the most important areas where research is being carried out for a long time in various domains. The objective of this article is to handle missing data, using an evolutionary (genetic) algorithm including some relatively simple methodologies that can often yield reasonable results. The proposed method uses genetic algorithm and multi-layer perceptron (MLP) for accurately predicting missing data with higher accuracy.

Publisher

IGI Global

Subject

General Medicine

Reference27 articles.

1. Missing data imputation using fuzzy-rough methods

2. A hybrid method for imputation of missing values using optimized fuzzy c-means with support vector regression and a genetic algorithm

3. Intelligent Decisive Support System for Disease Prediction with Multi Attribute Relational Deapthness Clustering of Breast Cancer Data Set Using Data Mining.;D.Banumathy;Middle East Journal of Scientific Research,2015

4. Heart Disease Prediction Using Data Mining Techniques.;A.D’Souza;International Journal of Research in Engineering and Science,2015

5. Deb, R., & Liew, A. (2016). Missing value imputation for the analysis of incomplete traffic accident data.Information sciences, 339, 274-289.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3