Heuristic Approaches for Non-Convex Problems

Author:

Toscano Rosario1,Ivan Ioan Alexandru1

Affiliation:

1. Université de Lyon, ENISE, LTDS, UMR 5513 CNRS, France

Abstract

This paper aims at solving difficult optimization problems arising in many engineering areas. To this end, two recently developed optimization method will be introduced: the heuristic Kalman algorithms (HKA) and the quasi geometric programming (QGP) problems. The principle of HKA is to consider the optimization problem as a measurement process intended to give an estimate of the optimum. A specific procedure, based on the Kalman estimator, is developed to improve the quality of the estimate obtained through a measurement process. A significant advantage of HKA against other stochastic methods lies mainly in the small number of parameters which have to be set by the user. In this paper we also introduce an extension of standard geometric programming (GP) problems which we call quasi geometric programming (QGP) problems. The consideration of this particular kind of nonlinear and possibly non smooth optimization problem is motivated by the fact that many engineering problems can be formulated as a QGP. To solve this kind of problems (QGP), an algorithm is proposed which is based on the resolution of a succession of standard GP. An interesting feature of the proposed approach is that it does not need to develop specific program solver and works well with any existing solver able to solve conventional GP. In the last part of the paper, it is to shown that HKA and QGP can be efficiently used to solve difficult non-convex optimization problems. In particular, we have addressed the problem of robust structured control and on-ship spiral inductor design. Numerical experiments exemplify the resolution of this kind of problems.

Publisher

IGI Global

Subject

General Medicine

Reference38 articles.

1. Angeline, P. J. (1998). Using selection improve particle swarm optimization. In Proceedings of the IEEE International Conference on Evolutionary Computation (pp. 84-89). Piscataway, NJ: IEEE Press.

2. Non-smooth structured control design with application to PID loop-shaping of a process

3. A tutorial on geometric programming

4. Convex Optimization

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3