City Data Fusion

Author:

Wang Meisong1,Perera Charith2,Jayaraman Prem Prakash3,Zhang Miranda1,Strazdins Peter1,Shyamsundar R.K.4,Ranjan Rajiv5

Affiliation:

1. Research School of Computer Science, Australian National University, Canberra, Australia

2. The Open University, Milton Keynes, UK

3. RMIT University, Melbourne, Australia

4. School of Technology & Computer Science, Tata Institute of Fundamental Research, Navy Nagar, India

5. CSIRO, Canberra, Australia and Newcastle University, Newcastle, UK

Abstract

Internet of Things (IoT) has gained substantial attention recently and play a significant role in smart city application deployments. A number of such smart city applications depend on sensor fusion capabilities in the cloud from diverse data sources. The authors introduce the concept of IoT and present in detail ten different parameters that govern our sensor data fusion evaluation framework. They then evaluate the current state-of-the art in sensor data fusion against our sensor data fusion framework. The authors' main goal is to examine and survey different sensor data fusion research efforts based on our evaluation framework. The major open research issues related to sensor data fusion are also presented.

Publisher

IGI Global

Subject

Computer Networks and Communications,Hardware and Architecture

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A low-power consumption security data fusion model for Industrial Internet of Things;International Journal of Computers and Applications;2024-09-13

2. Health-Monitoring Systems for Marine Structures: A Review;Sensors;2023-02-13

3. Potentials of semantic internet of things in smart cities: an overview and roadmap;2023 1st International Conference on Advanced Innovations in Smart Cities (ICAISC);2023-01-23

4. Harnessing Communication Heterogeneity: Architectural Design, Analytical Modeling, and Performance Evaluation of an IoT Multi-Interface Gateway;IEEE Internet of Things Journal;2023

5. Approaches and Techniques to Improve Machine Learning Performance in Distributed Transducer Networks;Lecture Notes in Data Engineering, Computational Intelligence, and Decision Making;2022-09-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3