A Comparative Study of Different Classification Techniques for Sentiment Analysis

Author:

Ghosh Soumadip1ORCID,Hazra Arnab1,Raj Abhishek1ORCID

Affiliation:

1. Academy of Technology, Kolkata, India

Abstract

Sentiment analysis denotes the analysis of emotions and opinions from text. The authors also refer to sentiment analysis as opinion mining. It finds and justifies the sentiment of the person with respect to a given source of content. Social media contain vast amounts of the sentiment data in the form of product reviews, tweets, blogs, and updates on the statuses, posts, etc. Sentiment analysis of this largely generated data is very useful to express the opinion of the mass in terms of product reviews. This work is proposing a highly accurate model of sentiment analysis for reviews of products, movies, and restaurants from Amazon, IMDB, and Yelp, respectively. With the help of classifiers such as logistic regression, support vector machine, and decision tree, the authors can classify these reviews as positive or negative with higher accuracy values.

Publisher

IGI Global

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference23 articles.

1. Armstrong, J.S., & Collopy, F. (1992). Error measures for generalizing about forecasting methods: Empirical comparisons. International Journal of Forecasting, 8(6980).

2. Robust Sentiment Detection on Twitter from Biased and Noisy data;L.Barbosa;23rd International Conference on Computational Linguistics: Posters

3. Assessing agreement on classification tasks: The kappa statistic Computational Linguistics.;J.Carletta;MIT Press,1996

4. Probabilistic model-based sentiment analysis of twitter messages

5. Support-vector networks

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3