Affiliation:
1. Department of Operational Sciences, Air Force Institute of Technology, Wright-Patterson AFB, OH, USA
Abstract
A computational political science approach is taken to analyze the State of the Union Addresses (SUA) from 1790 to 2015. While low-level features, e.g. linguistic characteristics, are commonly used for lexical analysis, the authors herein illustrate the utility of high-level features, e.g. Flesch-Kincaid readability, for knowledge discovery and discrimination between types of speeches. A process is developed and employed to exploit high-level features which employs 1) statistical clustering (k-means) and a literature review to define types of speeches (e.g. written or oral), 2) classification methods via logistic regression to examine the validity of the defined classes, and 3) classifier-based feature selection to determine salient features. Recent interest in the SUA has posited that changes in readability in the SUA are due to declining audience capabilities; however, the authors' results show that changes in readability are a reflection of changes in the SUA delivery medium.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献