Evidential Network-Based Multimodal Fusion for Fall Detection
Author:
Aguilar Paulo Armando Cavalcante1, Boudy Jerome1, Istrate Dan2, Medjahed Hamid2, Dorizzi Bernadette1, Mota João Cesar Moura3, Baldinger Jean Louis1, Guettari Toufik1, Belfeki Imad1
Affiliation:
1. Electronic and Physics Department, Mines Télécom- Télécom SudParis, Evry, France 2. École Supérieure d’Ingénieurs en Informatique et Génie des Télécommunications, Villejuif, France 3. Federal University of Ceará, Benfica, Fortaleza, Brazil
Abstract
The multi-sensor fusion can provide more accurate and reliable information compared to information from each sensor separately taken. Moreover, the data from multiple heterogeneous sensors present in the medical surveillance systems have different degrees of uncertainty. Among multi-sensor data fusion techniques, Bayesian methods and Evidence theories such as Dempster-Shafer Theory (DST) are commonly used to handle the degree of uncertainty in the fusion processes. Based on a graphic representation of the DST called Evidential Networks, we propose a structure of heterogeneous multi-sensor fusion for falls detection. The proposed Evidential Network (EN) can handle the uncertainty present in a mobile and a fixed sensor-based remote monitoring systems (fall detection) by fusing them and therefore increasing the fall detection sensitivity compared to the a separated system alone.
Subject
Health Informatics,Computer Science Applications
Reference17 articles.
1. Baldinger, J. L., Boudy, J., Dorizzi, B., & Levrey, J. P., Andreão, R. V., Perpère, C., … Lacombe, A. (2004). Tele-surveillance system for patient at home: The MEDEVILLE system. In J. Klaus, K. Miesenberger, W. L. Zagler & D. Burger (Eds.). Lecture Notes in Computer, (pp. 623). Berlin / Heidelberg, Germany: Springer. 2. Benavoli, A., Ristic, B., Farina, A., Oxenham, M., & Chisci, L. (2007, July 9-12). An approach to threat assessment based on evidential networks. In Proceedings of the 10th International Conference on Information Fusion, Quebec, Canada (pp. 1-8). 3. Cavalcante, P. A. A., Boudy, J., Istrate, D., Medjahed, H., Dorizzi, B., & Mota, J. C. M. … Belfeki, I. (2011, January 17-19). Fusion multi-capteurs hétérogène basée sur un Réseau d'Evidence pour la détection de chute. In Proceedings of the 2ndInternational Conference on Access and Substitution Systems of People in Handicap Situations (ASSISTH), Paris, France. 4. Upper and Lower Probabilities Induced by a Multivalued Mapping
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A Dynamic Evidential Network for Fall Detection;IEEE Journal of Biomedical and Health Informatics;2014-07
|
|