Evidential Network-Based Multimodal Fusion for Fall Detection

Author:

Aguilar Paulo Armando Cavalcante1,Boudy Jerome1,Istrate Dan2,Medjahed Hamid2,Dorizzi Bernadette1,Mota João Cesar Moura3,Baldinger Jean Louis1,Guettari Toufik1,Belfeki Imad1

Affiliation:

1. Electronic and Physics Department, Mines Télécom- Télécom SudParis, Evry, France

2. École Supérieure d’Ingénieurs en Informatique et Génie des Télécommunications, Villejuif, France

3. Federal University of Ceará, Benfica, Fortaleza, Brazil

Abstract

The multi-sensor fusion can provide more accurate and reliable information compared to information from each sensor separately taken. Moreover, the data from multiple heterogeneous sensors present in the medical surveillance systems have different degrees of uncertainty. Among multi-sensor data fusion techniques, Bayesian methods and Evidence theories such as Dempster-Shafer Theory (DST) are commonly used to handle the degree of uncertainty in the fusion processes. Based on a graphic representation of the DST called Evidential Networks, we propose a structure of heterogeneous multi-sensor fusion for falls detection. The proposed Evidential Network (EN) can handle the uncertainty present in a mobile and a fixed sensor-based remote monitoring systems (fall detection) by fusing them and therefore increasing the fall detection sensitivity compared to the a separated system alone.

Publisher

IGI Global

Subject

Health Informatics,Computer Science Applications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Dynamic Evidential Network for Fall Detection;IEEE Journal of Biomedical and Health Informatics;2014-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3