Comparative Study of ECG Classification Performance Using Decision Tree Algorithms

Author:

Charfi Faiza1,Kraiem Ali1

Affiliation:

1. Electronic and Information Technologies Laboratory, Sfax University, Sfax, Tunisia

Abstract

The electrocardiogram (ECG) signal has often been reported to play an important role in the primary diagnosis, prognosis, and survival analysis of heart diseases. Electrocardiography has brought several valuable impacts on the practice of medicine. This paper deals with the feature extraction and automatic analysis of different ECG signal waves using derivative based/ Pan-Tompkins based algorithms. The ECG signal contains an important amount of information that can be exploited in different way. It allows for the analysis of cardiac health condition. The discrimination of ECG signals using the Data Mining Decision Tree techniques is of crucial importance in the cardiac disease therapy and control of cardiac arrhythmias. Different ECG signals from MIT/BIH Arrhythmia data base are used for ECG features extraction and analysis. Two pathologies are considered: atrial fibrillation and right bundle branch block. Some decision tree classification algorithms currently in use, including C4.5, Improved C4.5, CHAID (Chi square Automatic Interaction Detector) and Improved CHAID are performed for performance analysis. Promising results have been achieved using the C4.5 classifier, with an overall accuracy of 96.87%.

Publisher

IGI Global

Subject

Health Informatics,Computer Science Applications

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3