Frequent Itemset Mining Algorithm Based on Linear Table

Author:

Lu Jun1,Xu Wenhe1,Zhou Kailong1,Guo Zhicong1

Affiliation:

1. Heilongjiang University, China

Abstract

Aiming at the speed of frequent itemset mining, a new frequent itemset mining algorithm based on a linear table is proposed. The linear table can store more shared information and reduce the number of scans to the original dataset. Furthermore, operations such as pruning and grouping are also used to optimize the algorithm. For different datasets, the algorithm shows different mining speeds. (1) In sparse datasets, the algorithm achieves an average 45% improvement in mining speed over the bit combination algorithm, and a 2-3 times improvement for the classic FP-growth algorithm. (2) In dense datasets, the average improvement over the classic FP-growth algorithm is 50-70%. For the bit combination algorithm, there are dozens of times of improvement. In fact, the algorithm that integrates bit combinations with bitwise AND operation can effectively avoid recursive operations and it is beneficial to the parallelization. Further analysis shows that the linear table is easy to split to facilitate the data batch mining processing.

Publisher

IGI Global

Subject

Hardware and Architecture,Information Systems,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3