Affiliation:
1. University of Auckland, New Zealand
2. University of Auckland, New Zealand & University of Liverpool, UK
3. Teesside University, UK
Abstract
Automatic keywords extraction and classification tasks are important research directions in the domains of NLP (natural language processing), information retrieval, and text mining. As the fine granularity abstracted from text data, keywords are also the most important feature of text data, which has great practical and potential value in document classification, topic modeling, information retrieval, and other aspects. The compact representation of documents can be achieved through keywords, which contains massive significant information. Therefore, it may be quite advantageous to realize text classification with high-dimensional feature space. For this reason, this study designed a supervised keyword classification method based on TextRank keyword automatic extraction technology and optimize the model with the genetic algorithm to contribute to modeling the keywords of the topic for text classification.
Subject
Information Systems and Management,Computer Science Applications,Management Information Systems
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献