The literature revealed approximately 50% of IT-related projects around the world fail, which must frustrate a sponsor or decision maker since their ability to forecast success is statistically about the same as guessing with a random coin toss. Nonetheless, some project success/failure factors have been identified, but often the effect sizes were statistically negligible. A pragmatic mixed methods recursive approach was applied, using structured programming, machine learning (ML), and statistical software to mine a large data source for probable project success/failure indicators. Seven feature indicators were detected from ML, producing an accuracy of 79.9%, a recall rate of 81%, an F1 score of 0.798, and a ROCa of 0.849. A post-hoc regression model confirmed three indicators were significant with a 27% effect size. The contributions made to the body of knowledge included: A conceptual model comparing ML methods by artificial intelligence capability and research decision making goal, a mixed methods recursive pragmatic research design, application of the random forest ML technique with post hoc statistical methods, and a preliminary list of IT project failure indicators analyzed from big data.