An Efficient Mixed Attribute Outlier Detection Method for Identifying Network Intrusions

Author:

Beulah J. Rene1ORCID,Punithavathani D. Shalini2

Affiliation:

1. Saveetha School of Engineering, India

2. Government College of Engineering, India

Abstract

Intrusion detection systems (IDS) play a vital role in protecting information systems from intruders. Anomaly-based IDS has established its effectiveness in identifying new and unseen attacks. It learns the normal usage pattern of a network and any event that significantly deviates from the normal behavior is signaled as an intrusion. The crucial challenge in anomaly-based IDS is to reduce false alarm rate. In this article, a clustering-based outlier detection (CBOD) approach is proposed for classifying normal and intrusive patterns. The proposed scheme operates in three modules: an improved hybrid feature selection phase that extracts the most relevant features, a training phase that learns the normal pattern in the training data by forming clusters, and a testing phase that identifies outliers in the testing data. The proposed method is applied for NSL-KDD benchmark dataset and the experimental results yielded a 97.84% detection rate (DR), a 1.88% false alarm rate (FAR), and a 97.96% classification accuracy (ACC). This proposal appears to be promising in terms of DR, FAR and ACC.

Publisher

IGI Global

Subject

Information Systems

Reference49 articles.

1. Instance-based learning algorithms

2. Ensemble Learning Mechanisms for Threat Detection

3. A Comparative Study for Outlier Detection Techniques in Data Mining

4. Outlier detection methods for identifying network intrusions – A survey;J. R.Beulah;International Journal of Applied Engineering Research,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3