Affiliation:
1. Saveetha School of Engineering, India
2. Government College of Engineering, India
Abstract
Intrusion detection systems (IDS) play a vital role in protecting information systems from intruders. Anomaly-based IDS has established its effectiveness in identifying new and unseen attacks. It learns the normal usage pattern of a network and any event that significantly deviates from the normal behavior is signaled as an intrusion. The crucial challenge in anomaly-based IDS is to reduce false alarm rate. In this article, a clustering-based outlier detection (CBOD) approach is proposed for classifying normal and intrusive patterns. The proposed scheme operates in three modules: an improved hybrid feature selection phase that extracts the most relevant features, a training phase that learns the normal pattern in the training data by forming clusters, and a testing phase that identifies outliers in the testing data. The proposed method is applied for NSL-KDD benchmark dataset and the experimental results yielded a 97.84% detection rate (DR), a 1.88% false alarm rate (FAR), and a 97.96% classification accuracy (ACC). This proposal appears to be promising in terms of DR, FAR and ACC.
Reference49 articles.
1. Instance-based learning algorithms
2. Ensemble Learning Mechanisms for Threat Detection
3. A Comparative Study for Outlier Detection Techniques in Data Mining
4. Outlier detection methods for identifying network intrusions – A survey;J. R.Beulah;International Journal of Applied Engineering Research,2015
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献