Metamorphic malware detection using opcode frequency rate and decision tree

Author:

Fazlali Mahmood1,Khodamoradi Peyman2,Mardukhi Farhad3,Nosrati Masoud2,Dehshibi Mohammad Mahdi4

Affiliation:

1. Department of Computer Science, Cyberspace Research Institute, Shahid Beheshti University, GC, Tehran, Iran

2. Department of Computer Engineering, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran

3. Department of Computer Engineering, Razi University, Kermanshah, Iran

4. Pattern Research Center, Tehran, Iran

Abstract

Malware is defined as any type of malicious code that is the potent to harm a computer or a network. Modern malwares are accompanied with mutation characteristics, namely polymorphism and metamorphism. They let malwares to generate enormous number of variants. Rising number of metamorphic malwares entails hardship in analyzing them for signature extraction and database updates. In spite of the broad use of signature-based methods in the security products, they are not able detect the new unseen morphs of malware, and it is stemmed from changing the structure of malware as well as the signature in each infection. In this paper, a novel method is proposed in which the proportion of opcodes is used for detecting the new morphs. Decision trees are utilized for classification and detection of malware variants based on the rate of opcode frequencies. Three metrics for evaluating the proposed method are speed, efficiency and accuracy. It was observed in the course of experiments that speed and time complexity will not be challenging factors; because of the fast nature of extracting the frequencies of opcodes from source assembly file. Empirical validation reveals that the proposed method outperforms the entire commercial antivirus programs with a high level of efficiency and accuracy.

Publisher

IGI Global

Subject

Information Systems

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Network intrusion detection leveraging multimodal features;Array;2024-07

2. A Novel Feature Vector for AI-Assisted Windows Malware Detection;2023 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech);2023-11-14

3. Parallel Image Encryption Algorithm Using Partitioned Cellular Automata on Graphic Processor Unit;2023 IEEE International Conference on Omni-layer Intelligent Systems (COINS);2023-07-23

4. Study of Various Cyber Threats and Their Mitigation Techniques Requirements;Wireless Personal Communications;2023-03-23

5. Malware Analysis Using a Hybridised Model;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3