Automated Math Symbol Classification Using SVM

Author:

Vaidehi K. 1,Manivannan R. 1

Affiliation:

1. Stanley College of Engineering and Technology for Women, India

Abstract

Handwritten character/symbol recognition is an important area of research in the present digital world. The solving of problems such as recognizing handwritten characters/symbols written in different styles can make the human job easier. Mathematical expression recognition using machines has become a subject of serious research. The main motivation for this work is both recognizing of the handwritten mathematical symbol, digits and characters which will be used for mathematical expression recognition. The system first identifies the contour in handwritten document segmentation and features extracted are given into SVM classifier for classification. GLCM and Zernike Moments are the two different feature extraction techniques used in this work. SVM with RBF kernel is used for classification. Zernike Moment features overperforms than GLCM. Zernike Moment achieves 97.89% accuracy and GLCM achieves 87.61% accuracy.

Publisher

IGI Global

Subject

Computer Networks and Communications,Computer Science Applications

Reference29 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3