GA on IR

Author:

Al-Dallal Ammar1,Abdul-Wahab Rasha S.2

Affiliation:

1. School of Information Systems Computing and Mathematics, Brunel University, West London, UK

2. College of Information Technology, Ahlia University, Manama, Bahrain

Abstract

Increasing the growth rates of websites’ number has led to the challenge of assisting Web customers in finding appropriate details from the Internet using an intelligent search engine. Information retrieval (IR) is an essential and useful strategy for Web users; thus, different strategies and techniques are designed for such purpose. Currently, the focus on the usefulness of Artificial Intelligence (AI) has been improved with IR. One AI area is Evolutionary Computation (EC), which is based on designs of natural selection. A traditional and important strategy in EC is Genetic Algorithm (GA); this paper adopts the GA technique to enhance the retrieval of HTML documents. This improvement is obtained by creating a modern evaluation function and applying a hybrid crossover operator. The proposed evaluation function is based on term proximity, keyword probability within the document, and HTML tag weight query. Experimental results are compared with two well known evaluation function functions applied in IR domain which are Okapi-BM25 and Bayesian interface network model. The results demonstrate a good level of enhancement to the recall and precision. In addition, the documents retrieved by the proposed system were more accurate and relevant to the queries than that retrieved by other models.

Publisher

IGI Global

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Knowledge in Memetic Algorithms for Stock Classification;International Journal of Artificial Life Research;2014-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3