Iterative and Semi-Supervised Design of Chatbots Using Interactive Clustering

Author:

Schild Erwan1ORCID,Durantin Gautier1,Lamirel Jean-Charles2,Miconi Florian1

Affiliation:

1. Euro Information Développements, France

2. LORIA, France

Abstract

Chatbots represent a promising tool to automate the processing of requests in a business context. However, despite major progress in natural language processing technologies, constructing a dataset deemed relevant by business experts is a manual, iterative and error-prone process. To assist these experts during modelling and labelling, the authors propose an active learning methodology coined Interactive Clustering. It relies on interactions between computer-guided segmentation of data in intents, and response-driven human annotations imposing constraints on clusters to improve relevance.This article applies Interactive Clustering on a realistic dataset, and measures the optimal settings required for relevant segmentation in a minimal number of annotations. The usability of the method is discussed in terms of computation time, and the achieved compromise between business relevance and classification performance during training.In this context, Interactive Clustering appears as a suitable methodology combining human and computer initiatives to efficiently develop a useable chatbot.

Publisher

IGI Global

Subject

Hardware and Architecture,Software

Reference29 articles.

1. An Overview of Chatbot Technology

2. Alexa Internet. (2018). Keyword Research, Competitor Analysis, & Website Ranking. https://www.alexa.com

3. Bocklisch, T., Faulkner, J., Pawlowski, N., & Nichol, A. (2017). Rasa: Open Source Language Understanding and Dialogue Management.https://arxiv.org/abs/1712.05181

4. Costello, K. (2019). Gartner Top Technologies and Trends Driving the Digital Workplace. Gartner, Inc. https://www.gartner.com/smarterwithgartner/top-10-technologies-driving-the-digital-workplace/

5. Agglomerative Hierarchical Clustering with Constraints;I.Davidson;Theoretical and Empirical Results. Springer,2005

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3