A Combined Forecast Method Integrating Contextual Knowledge

Author:

Huang Anqiang1,Xiao Jin2,Wang Shouyang3

Affiliation:

1. Beihang University, China

2. Sichuan University and Chinese Academy of Sciences, China

3. Chinese Academy of Sciences, China

Abstract

In the framework of TEI@I methodology, this paper proposes a combined forecast method integrating contextual knowledge (CFMIK). With the help of contextual knowledge, this method considers the effects of those factors that cannot be explicitly included in the forecast model, and thus it can efficiently decrease the forecast error resulted from the irregular events. Through a container throughput forecast case, this paper compares the performance of CFMIK, AFTER (a combined forecast method) and 3 types of single models (ARIMA, BP-ANN, exponential smoothing). The results show that the performance of CFMIK is better than that of the others.

Publisher

IGI Global

Subject

Artificial Intelligence,Management of Technology and Innovation,Information Systems and Management,Organizational Behavior and Human Resource Management,Strategy and Management,Information Systems

Reference55 articles.

1. Ambrosino, R., & Buchanan, B. G. (1999). The use of physician domain knowledge to improve the learning of rule-based models for decision-support. In Proceedings of the Annual Fall Symposium of the American Medical Informatics Association (pp. 192-196).

2. Automatic neural network modeling for univariate time series

3. A note on a comparison of exponential smoothing methods for forecasting seasonal series

4. The Combination of Forecasts

5. Bhansali, R. J. (1997). Direct autoregressive predictions for multistep prediction: Order selection and performance relative to the plug in predictors. Statistica Sinca, 7, 425-449.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3