Investigation of the Impact of Tool Pin Geometry and Feed Rate Speed in Friction Stir Lap Welding of 7075 and 5182 Aluminum Alloys

Author:

Ekinci Ömer1ORCID

Affiliation:

1. SİVAS BİLİM VE TEKNOLOJİ ÜNİVERSİTESİ

Abstract

7075 and 5182 aluminum alloys are crucial for aerospace and automotive applications, receptively. Joining these alloys can enable more economical and efficient structures. Therefore, weldability of these materials by friction stir lap welding (FSLW) was studied based on investigating influence of tool pin geometry (conical and cylindrical screw) and welding speed (22, 37 and 51 mm min-1) on weld microstructure and mechanical properties. Strong welds were acquired with both tools. However, stronger ones were made employing conical pin tool thanks to having a deeper weld penetration and denser microstructure. Weld strength improved with increasing tool advancing speed for conical pin tool since welded area width and vertical downward penetration increased while opposite of this occurred for cylindrical screw pin. While by conical pin, the strongest weld having 13033 N tensile load was made at 51 mm min-1, by cylindrical screw pin, the strongest weld with 12162 N was obtained at 22 mm min-1. It was an indication of a stronger weld formation for both tools when the lines formed through tool shoulder on top surface of upper sheet were broken into small particles and disappeared. Proper tool advancing speed value can show considerable variability depending on tool pin geometry.

Publisher

Bingol Universitesi

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3