Investigation of mechanical properties of graphene-CNT reinforced nickel metal matrix nanocomposite structure

Author:

Değirmenci Ünal1ORCID

Affiliation:

1. Bingöl Üniversitesi

Abstract

Nickel is a metal widely used in many industrial applications, but despite its superior properties, it also has some shortcomings. Carbon-based structures can be important reinforcement elements in improving the properties of metals. By providing a balance between the high corrosion resistance, high electrical conductivity and good magnetic properties of the nickel material and the lightness and high strength of carbon-based structures, a material with advanced properties can be obtained. Therefore, in this study, a new Nickel-Carbon nanostructure supported by a covalently bonded graphene-carbon nanotube (CNT) skeleton structure is presented. Additionally, three material designs with different geometric dimensions (Ni-G-CNT(5,5), Ni-G-CNT(10,10) and Ni-G-CNT(15,15)) were designed to determine the mechanical properties and properties of the structures in all directions. is to investigate the underlying deformation mechanisms. According to the results, it was observed that G-CNT structures increased the tensile and compressive behavior of the Ni structure in the CNT direction. For tensile loading in the CNT direction, as the CNT diameter decreases, the elastic modulus of the hybrid structures increases, while the maximum stress values are independent of the CNT diameter. As the CNT diameter increases, the ductility of the structures increases. In terms of compressive strength, it has been observed that in the linear region, as the CNT diameter increases, the strength generally increases and in the condensation region, it exhibits better compressive strength. With this study, an anisotropic nanostructure that is lighter and can exhibit higher tensile strength compared to the Ni structure is presented.

Publisher

Bingol Universitesi

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3