Enerji Verimli Aydınlatma Tasarımı: Farklı Pencere Boyutlarında Optimum Gün Işığı Kullanımı Üzerine Bir Araştırma

Author:

DURAK Aylin1ORCID,ÇİFCİ Ahmet1ORCID

Affiliation:

1. BURDUR MEHMET AKİF ERSOY ÜNİVERSİTESİ

Abstract

In recent years, with the frequently discussed concept of sustainability, designers have been increasingly demanded to improve spatial comfort conditions. The growing emphasis on energy efficiency in design has led designers to consider these issues at earlier stages of the design process. Daylight, seen as a clean, uninterrupted energy source and a cost-effective alternative to artificial lighting, also ensures visual comfort for individuals due to its good color rendering. Despite all these well-known benefits, design criteria have not been established to reduce the energy consumption rate caused by artificial lighting while taking into account the factors affecting daylight, an important input. This study presents an investigation aimed at achieving energy savings in lighting by using the ideal window concept and other parameters to optimally benefit from daylight. The study has been applied under cloudy sky and deep room conditions, which represent the worst-case scenarios. As an alternative to time-consuming mathematical calculations, the Velux Daylight Visualizer lighting simulation program was used to create three-dimensional designs for horizontal, vertical, square, and roof windows separately, and the effects of these windows on the daylight factor were analyzed. The impact of different furniture colors in the interior space was also examined. Following the investigations, it was observed that roof windows produced more daylight compared to others. However, since roof windows cannot be used in multi-story buildings, a comparison was made between horizontal, vertical, and square windows, and it was concluded that horizontal windows placed close to the upper wall were more efficient than the others. In addition, it was observed that lighter-colored furniture, among the light and dark furniture, produced more daylight compared to the other.

Publisher

Bingol Universitesi

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3