LACC1 contributes to inflammation and cognitive disorder after stroke via the AMPK/NLRP3 pathway

Author:

Jiao Junping,Tian Shujuan,Bao Junqiang,Wang Zhiwei,Yang Guofeng

Abstract

The current study aimed to investigate the effects of LACC1 on cognitive disorder due to stroke, as well as its underlying mechanism. LACC1 promoted inflammation and aggravated cognitive impairment in a mouse model of stroke. In an in vitro model of stroke, inhibition of LACC1 reduced inflammation and ROS‑induced oxidative stress by activating AMP‑activated protein kinase (AMPK) expression and suppressing NLPR3 expression. Furthermore, our studies revealed that inhibition of AMPK activity reduced the effects of si‑LACC1 on cognitive disorder in mice after stroke via the AMPK/NLPR3 pathway. AMPK activation also reduced the effects of LACC1 on inflammation and ROS‑induced oxidative stress via the NLPR3 pathway in the in vitro model that we evaluated. Our study suggests that LACC1‑aggravated inflammation causes cognitive impairment after stroke via the AMPK/NLRP3 pathway, which may provide a new therapeutic target for stroke and other neurological diseases and their associated complications. In sum, we identified an important role and regulatory mechanism for LACC1 in maintaining stroke‑induced cognitive disorder via the AMPK/NLRP3 pathway.

Publisher

The Nencki Institute of Experimental Biology, Polish Academy of Sciences

Subject

General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3