Optical imaging of the intrinsic signal as a tool to characterize orientation sensitivity in the primary visual cortex of the young mouse

Author:

Raciborska Ida,Dzwiniel Piotr,Kordecka Katarzyna,Posłuszny Anna,Waleszczyk Wioletta,Wróbel Andrzej

Abstract

We employed intrinsic signal optical imaging (ISOI) to investigate orientation sensitivity bias in the visual cortex of young mice. Optical signals were recorded in response to the moving light gratings stimulating ipsi‑, contra‑ and binocular eye inputs. ISOI allowed visualization of cortical areas activated by gratings of specific orientation and temporal changes of light scatter during visual stimulation. These results confirmed ISOI as a reliable technique for imaging the activity of large populations of neurons in the mouse visual cortex. Our results revealed that the contralateral ocular input activated a larger area of the primary visual cortex than the ipsilateral input, and caused the highest response amplitudes of light scatter signals to all ocular inputs. Horizontal gratings moved in vertical orientation induced the most significant changes in light scatter when presented contralaterally and binocularly, surpassing stimulations by vertical or oblique gratings. These observations suggest dedicated integration mechanisms for the combined inputs from both eyes. We also explored the relationship between point luminance change (PLC) of grating stimuli and ISOI time courses under various orientations of movements of the gratings and ocular inputs, finding higher cross-correlation values for cardinal orientations and ipsilateral inputs. These findings suggested specific activation of different neuronal assemblies within the mouse’s primary visual cortex by grating stimuli of the corresponding orientation. However, further investigations are needed to examine this summation hypothesis. Our study highlights the potential of optical imaging as a valuable tool for exploring functional‑anatomical relationships in the mouse visual system.

Publisher

The Nencki Institute of Experimental Biology, Polish Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3