Abstract
Bu çalışmada, eriyik yığma modelleme ile üretilen polilaktik asit numunelerinin çekme mukavemeti, akma mukavemeti ve ağırlık gibi özellikleri incelenmiştir. Numunelerin 3D baskısı için dolgu yoğunluğu, katman kalınlığı ve baskı hızı olmak üzere üç temel parametre dikkate alınmıştır. Deneylerin tasarımında Taguchi’nin L9 ortogonal dizisi kullanılmış ve varyans analizi yöntemiyle her bir süreç parametresinin her bir yanıta olan göreceli etkisi ve katkısı belirlenmiştir. Taguchi yöntemi kullanılarak yapılan testlerde, çekme mukavemeti için optimum parametrelerin baskı hızı 60 mm/s, katman kalınlığı 0.3 mm ve %80 dolgu yoğunluğu olduğu; akma mukavemeti için ise 50 mm/s, katman kalınlığı 0.3 mm ve %80 dolgu yoğunluğu olduğu; ağırlık için ise 50 mm/s, katman kalınlığı 0.2 mm ve %40 dolgu yoğunluğu olduğu belirlenmiştir. Gri İlişki Analizi, en yüksek gri ilişki derecesinin baskı hızı 50 mm/s, katman kalınlığı 0.3 mm ve %80 dolgu yoğunluğunda elde edildiğini göstermiştir. Varyans analizi sonuçlarına göre, %76 katkı oranı ile Gri İlişki Derecesi için en önemli değişkenin dolgu yoğunluğu olduğu tespit edilmiştir. Önerilen Taguchi tabanlı gri ilişkisel analiz yöntemi, tüm yanıtlar için optimum parametreleri belirlemiştir. Bu çalışma, nihai ürün üretim süreci için en iyi 3D baskı işlem parametre ayarlarını belirleyerek Türkçe literatürdeki önemli bir boşluğu doldurmaktadır.
Publisher
Manufacturing Technologies and Applications
Reference25 articles.
1. K. Özsoy, B. Duman, Eklemeli imalat (3 boyutlu baskı) teknolojilerinin eğitimde kullanılabilirliği, International Journal of 3D Printing Technologies and Digital Industry, 1(1): 36-48, 2017.
2. Ş. Erener, S. Boz, Modern üretim tekniklerinde eklemeli imalat sistemlerinin yeri ve kullanım alanları, Turkish Journal of Fashion Design and Management, 3(1): 47-56, 2021.
3. T. D. Ngo, A. Kashani, G. Imbalzano, K. T. Nguyen, D. Hui, Additive manufacturing (3D printing): A review of materials, methods, applications and challenges, Composites Part B: Engineering, 143: 172-196, 2018.
4. J.S. Chohan, R. Singh, K.S. Boparai, R. Penna, F. Fraternali, Dimensional accuracy analysis of coupled fused deposition modeling and vapour smoothing operations for biomedical applications, Composites Part B: Engineering, 117: 138-149, 2017.
5. O.A. Mohamed, S.H. Masood, J.L. Bhowmik, Optimization of fused deposition modeling process parameters: a review of current research and future prospects, Advances in manufacturing, 3: 42-53, 2015.