Author:
Asadamraji Morteza,Saffarzadeh Mahmoud,Borujerdian Aminmirza,Ferdousi Tayebeh
Abstract
A driver’s reaction time encountering hazards on roads involves different sections, and each section must occur at the right time to prevent a crash. An appropriate reaction starts with hazard detection. A hazard can be detected on time if it is completely visible to the driver. It is assumed in this paper that hazard properties such as size and color, the contrast between the environment and a hazard, whether the hazard is moving or fixed, and the presence of a warning are effective in improving driver hazard detection. A driving simulator and different scenarios on a two-lane rural road are used for assessing novice and experienced drivers’ hazard detection, and a Sugeno fuzzy model is used to analyze the data. The results show that the hazard detection ability of novice and experienced drivers decreases by 35% and 64%, respectively, during nighttime compared to daytime. Also, moving hazards increase hazard detection ability by 9% and 180% for experienced and novice drivers, respectively, compared to fixed hazards. Moreover, increasing size, contrast, and color difference affect hazard detection under nonlinear functions. The results could be helpful in safety improvement solution prioritization and in preventing vehicle-pedestrian, vehicle-animal, and vehicle-object crashes, especially for novice drivers.
Publisher
Faculty of Transport and Traffic Sciences
Subject
Engineering (miscellaneous),Ocean Engineering,Civil and Structural Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献