Cyclist’s Intention Identification on Pedestrian-Bicycle Mixed Sections Based on Phase-Field Coupling Theory

Author:

Wang Haibo,Si Haiqing,Wang Xiaoyuan

Abstract

Bicycle is one of the main factors that affects the traffic safety and capacity on pedestrian-bicycle mixed traffic sections. It is important for implementing the warning of bicycle safety and improving the active safety to identify the cyclists’ intention in the mixed traffic environments under the condition of the “Internet of Things”. The phase-field coupling theory has been developed in this paper to comprehensively analyse the generation, spring up, increase, transfer, regression and reduction method of the traffic phase. The adaptive genetic algorithm based on the information entropy has been used to extract feature vectors of different types of cyclists for intention identification from the reduced pedestrian-bicycle traffic phase, and the theory of evidence has been provided here to build the identification model. The experimental verification shows that the extraction method of cyclists’ intention feature vector and identification model are scientific and reasonable. The theoretical basis can be applied to establishing the pedestrian-bicycle interactive security system.

Publisher

Faculty of Transport and Traffic Sciences

Subject

Engineering (miscellaneous),Ocean Engineering,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3