Abstract
BACKGROUND: Aging is an inevitable and irreversible process associated with increased risk of developing various neurodegenerative diseases, one of which is Alzheimer's disease. Currently, the role of glial cells, in particular microglia, in the pathogenesis of Alzheimer's disease is being actively studied. However, only a few studies have correlated the morphological features of microglia and their spatial arrangement in relation to A plaques.
AIM: Describe the main morphological parameters of microglia in the 5xFAD mouse model of Alzheimer's disease at a late stage of pathology development.
METHODS: Mice from the 5xFAD line were studied as a model of rapid amyloidosis, at the age of 15-16 months. To study morphological diversity, an immunohistological analysis of cerebral cortex sections was performed with the help of ImageJ application using the Skeletonize, Analyze Skeleton (2D/3D) and FracLac plugins.
RESULTS: During the study, 5xFAD mice were divided into two groups. Carriers of the APP and PSEN1 transgenes were assigned to the "FAD" group, wild-type mice to the "Wt" group and were taken as controls, each group included 3 mice. From each mouse, we analyzed 3-4 sagittal sections (50m) of the brain to study the morphological features of microglia in the late stage of Alzheimer's disease. The results obtained showed that the microglial cells of mice with signs of Alzheimer's disease have a lower fractal dimension, lacunarity and branching.
CONCLUSION:. The presence of -amyloid plaques contributes to the migration of microglia to the focus of inflammation, its proliferation and transition to the phagocytic and dystrophic subtype. According to fractal analysis, there is a significant (p0.05) decrease in the average branching of microglial processes, a decrease in fractal dimension and lacunarity.
Subject
Transplantation,Cell Biology,Molecular Biology,Biomedical Engineering,Surgery,Biotechnology