Author:
Lisyukov A. N,Kuznetsov M. S,Saitov V. R,Salnikova M. M,Bikmullina I. A,Koshpaeva E. S,Tyapkina O. V,Valiullin V. V,Islamov R. R
Abstract
Earlier, in mice after a 30-day space flight on the Bion-M1 biosatellite, we found signs of a negative effect of weightlessness on the structure of myelinated fibers of the spinal cord tracts; these findings indicate their involvement in the pathogenesis of hypogravitational motor syndrome (HMS). In the present study, under conditions of hypogravity modeling by the hindlimb unloading, we obtained data on destructive changes in the myelinated fibers of the motor posterior corticospinal tract (tractus corticospinalis posterior), sensitive anterior spinocerebellar tract (tractus spino-cerebellaris anterior), and the gracile fascicle (fasciculus gracilis), as well as in the tibial fascicle (fasciculus tibialis) of the sciatic nerve of mice 30 days after unloading. The obtained data confirm our hypothesis on the role of disturbance in the processes of myelination of nerve fibers during the development of HMS, both during space flight and under conditions of simulating hypogravity on Earth. Morphometric analysis after a 7-day period of readaptation did not reveal signs of restoration of pathological changes in myelinated fibers that arose after 30 days of hanging. However, preventive gene therapy (administration of a gene construct providing the synthesis of recombinant vascular endothelial growth factor, glial cell line-derived neurotrophic factor, and neural cell adhesion molecule, prior to hindlimb unloading) has been shown to be effective in the preservation of myelinated fibers in projection anterior spininocerebellar tract, compared with control animals that did not receive gene therapy. The research carried out at this stage gives ground to make a preliminary conclusion about the advisability of developing methods of preventive gene therapy to prevent the development of GDS during long-term space flights.
Subject
Transplantation,Cell Biology,Molecular Biology,Biomedical Engineering,Surgery,Biotechnology
Reference28 articles.
1. Roy R.R., Zhong H., Bodine S.C. et al. Fiber size and myosin phenotypes of selected rhesus lower limb muscles after a 14-day spaceflight. J. Gravit. Physiol. 2000; 7(1): S45.
2. Shenkman B.S. From Slow to Fast: Hypogravity-Induced Remodeling of Muscle Fiber Myosin Phenotype. Acta Naturae 2016; 8(4): 47-59.
3. Comfort P., McMahon J.J., Jones P.A. et al. Effects of Spaceflight on Musculoskeletal Health: A Systematic Review and Meta-analysis, Considerations for Interplanetary Travel, https://link.springer.com/article/10.1007/s40279-021-01496-9.
4. Fitts R.H., Riley D.R., Widrick J.J. Functional and structural adaptations of skeletal muscle to microgravity. J. Exp. Biol. 2001; 204(18): 3201-8.
5. Narici M., Kayser B., Barattini P. et al. Effects of 17-day spaceflight on electrically evoked torque and cross-sectional area of the human triceps surae. Eur. J. Appl. Physiol. 2003; 90(3-4): 275-82.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献