TRANS-SPINAL DIRECT CURRENT STIMULATION WITH INTENSITY 2,5 MA DOES NOT AFFECT THE CORTICOSPINAL SYSTEM EXCITABILITY AND MOTOR SKILLS

Author:

Pomelova EkaterinaORCID,Popyvanova Alyona,Bredikhin DmitryORCID,Koriakina MariaORCID,Shestakova Anna N.ORCID,Blagovechtchenski Evgeny D.ORCID

Abstract

BACKGROUND: Non-invasive brain stimulation is an effective way to affect movement production, including the spinal cord level. It is known, that the stimulation effects are very sensitive to montage and protocols of applied stimulation, because it can involve different neuronal mechanisms. AIM: The purpose of the study was to estimate the effect of anodal transspinal direct current stimulation (tsDCS) with intensity 2,5 mA applied at the level of the cervical enlargement of the spinal cord (C7-Th1 segments) on the corticospinal system (CSS) excitability and motor skills. METHODS: The study involved 54 healthy adults aged 21,19 3,2 years. The effect of tsDCS was assessed using motor evoked potentials (MEP) from the first dorsal interosseous (FDI) muscle by transcranial magnetic stimulation in the primary motor cortex before stimulation, immediately after stimulation, and after 15 minutes. RESULTS: Our results showed that the application of an 11-minute anodal tsDCS at the level of the cervical spine C7-Th1 with a current value of 2.5 mA does not affect the MEP of FDI. The statistical analysis demonstrated that the dynamics of MEP amplitudes did not differ between groups receiving anodal tsDCS and sham stimulation. Also, anodal tsDCS did not affect motor skills. An individual's ability to coordinate fingers and manipulate objects effectively (a measure of dexterity) in 9-HPT, and pressing a key in response to a visual stimulus in SRT, did not differ from sham stimulation. CONCLUSION: Therefore, it can be assumed that 2.5 mA anodal tsDCS on the cervical enlargement of the spinal cord does not affect the CSS excitability or change motor skills associated with precise hand movements.

Publisher

ECO-Vector LLC

Subject

Transplantation,Cell Biology,Molecular Biology,Biomedical Engineering,Surgery,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3