Reducing Mercury Emissions from Small-Scale Coal-Fired Boilers Used in Residential Heating

Author:

Sławomir Stelmach 1,Katarzyna Matuszek 1,Piotr Hrycko 1,Paweł Wolny 2,Jiří Horák 3,Lenka Kuboňová 3

Affiliation:

1. Institute of Energy and Fuel Processing Technology

2. Faculty of Process Engineering and Environmental Protection, Lodz University of Technology

3. VŠB -Technical University of Ostrava

Abstract

Aim: The aim of the research was to demonstrate that the use of low-emission carbon fuels (obtained using the initial thermal conversion of coal feedstock) in residential heating also makes it possible to reduce mercury emissions from small-scale coal-fired boilers. Project and methods: The publication presents the results of mercury emission tests conducted using five different small-scale coal-fired boilers and five different coal fuels. The research was carried out under laboratory conditions, but also using heating devices of residential users. They covered a wide range of operational parameters, both energy and emission. The flux of coal fuels burned ranged from 2 to 12.2 kg/h, with an equally wide range of boiler efficiencies obtained – 67.6–88.5%. Results: The test results presented in the article show that the amount of emissions of pollutants limited by the criteria of the PN-EN 303-5+A1:2023-05 standard and the ecodesign, namely carbon monoxide, nitrogen oxides, dust and organic substances, depends mainly on the design and operating conditions of the device in which the specific solid fuel is burned. There is a group of pollutants emitted into the atmosphere, for which the amount of emissions depends primarily on the quality of the fuel burned. These pollutants include sulphur oxides and mercury, whose emissions depend primarily on the combustible sulphur and mercury content of the fuel being burned. Conclusions: Experimental studies were carried out to verify what portion of Hg contained in coal during its combustion in domestic boilers with manual and automatic fuel feeding remains bound in bottom ash, and what is emitted into the atmosphere. The content of Hg in bottom ash, regardless of the boiler and fuel used, was at a similar low level, reaching a maximum of about 6% of Hg initially contained in the fuel. As studies have shown, more than 94% of mercury contained in coal fuels burned in small-scale coal-fired boilers is emitted into the atmosphere, contributing significantly to the deterioration of the environment. Replacing traditional coal with low-emission carbon fuels (e.g., such as BC fuel) would significantly reduce mercury emissions from small-scale coalfired boilers, by up to 90% compared to current emissions. Setting a legal requirement for the permissible level of mercury content in coal fuels used in domestic boilers, for example, at a maximum value of 0.05 mg/kg, would reduce mercury emissions from these devices by at least half. Keywords: mercury emission, small-scale coal-fired boilers, low-emission carbon fuel

Publisher

CNBOP-PIB Centrum Naukowo-Badawcze Ochrony Przeciwpozarowej

Reference26 articles.

1. Kabata-Pendias A., Pendias H., Biogeochemistry of trace elements, PWN, Warszawa, 1999.

2. Feng X.B., Qiu G.L., Fu X.W., He T.R., Li P., Wang S.F., Mercury pollution in the environment, „Progress in chemistry” 2009, 21(2–3), 436–457.

3. UN Environment, Global Mercury Assessment 2018, UN Environment Programme, Chemicals and Health Branch Geneva, Switzerland 2019.

4. Arctic Monitoring and Assessment Programme, Technical Background Report for the Global Mercury Assessment, Oslo 2017.

5. Wichliński M., Emisja rtęci z polskich elektrowni w świetle konkluzji BAT, „Polityka Energetyczna” 2017, 20, 79–88.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3