Utilizing artificial neural networks to anticipate early-age thermal parameters in concrete piers

Author:

Hoàng Việt Hải,Đỗ Anh Tú,Phạm Đức Thọ

Abstract

Recently, researches have been used Artificial Neural Network (ANN) to predict the early-age thermal cracking of rectangle piers. But ANN has not resulted for different types of concrete piers. This article presents an evaluation of the early-age thermal characteristics of mass concrete piers with four distinct cross-sectional shapes. A finite element (FE) model was employed to estimate the maximum temperature, thermal stress, and cracking potential of the concrete pier at its early age. To investigate the impact of various pier geometries on the thermal cracking potential, different pier geometries were considered. In this study, an ANN model was utilized to predict the maximum temperature and decrease the risk of cracking in mass concrete piers at early age. The database of thermal mass concrete piers used in this study comprises 128 results obtained from the FE model. The results of the analysis indicate that the ANN model can predict early-age thermal parameters, and cracking risk in early-age concrete piers with good accuracy and help to the designer to choose the appropriate size in minimizing cracks on the pier concrete.

Publisher

University of Transport and Communications

Subject

Materials Chemistry,Economics and Econometrics,Media Technology,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3