Prospects for the Development of Smart Clothing with the Use of Textile Materials with Magnetic Properties

Author:

Riabchykov MykolaORCID,Alexandrov Alexandr,Trishch Roman,Nikulina Anastasiia,Korolyova Natalia

Abstract

The article studies the properties of textile materials filled with magnetite nanoparticles. These materials have great prospects for creating smart clothes. They have both magnetic and hygienic properties. Chemical transformations in the production of magnetic nanopowder are described. The end product of the process is a mixture of oxides of divalent and ferric iron. The resulting mixture has magnetic properties. Conducted micro and macro experiments showed sufficient adhesion retention strength of magnetite nanoparticles in a textile material. Microscopic studies of the attachment of magnetic particles to the fibers of a textile material have been conducted. The data obtained in express mode allow us to determine the average mass of a magnetic particle in a textile material, the total number of nanoparticles, and, accordingly, to predict the magnetic force that a textile material saturated with magnetite can possess. The existence of the magnetic properties of a textile material filled with magnetite nanoparticles has been proven. A mathematical model of the dependence of the magnetic attraction force of a textile material on the distance and the number of abrasion cycles has been developed. The directions of the use of magnetic textile materials for the creation of smart clothes are proposed. Potential uses for such materials include sportswear and textiles for the disabled. The developed methods can predict the magnetic strength of the obtained textile materials and evaluate their resistance, which is necessary in the development of smart clothing elements based on these materials.

Publisher

University of Ljubljana

Subject

Industrial and Manufacturing Engineering,Polymers and Plastics,General Business, Management and Accounting,Business and International Management

Reference20 articles.

1. BARABÁŠ, J., BALOGOVÁ, Ľ., GÁLA, M., BABUŠIAK, B. Conductive paths and influence of theirinterconnection on tranmission of electric signal in smart clothing. Vlákna a textil, 24(4), 2017, 9–14.

2. ROGALE FIRŠT, Snježa na, ROGALE , Dubravko, NIKOLIĆ, Gojko Intelligent clothing: first and second generation clothing with adaptive thermal insulation properties. Textile Research Journal, 2018, 88(9), 2214–2233, doi: 10.1177/0040517517718190.

3. MAGNI, A. Nanotechnologies and the textile industry: the future is upon us. Tinctoria, 2004, 101(10), 60–61.

4. YEZHOVA, O.V. Prognosing development of textile nanotechnologies. Vlákna a textil, 2017, 24(4), 66–69.

5. HAN, Y., OBENDORF, S.K. Reactivity and reusability of immobilized zinc oxide nanoparticles in fibers on methyl parathion decontamination. Textile Research Journal, 2016, 86(4), 339–349, doi: 10.1177/0040517515596935.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3