Abstract
The article studies the properties of textile materials filled with magnetite nanoparticles. These materials have great prospects for creating smart clothes. They have both magnetic and hygienic properties. Chemical transformations in the production of magnetic nanopowder are described. The end product of the process is a mixture of oxides of divalent and ferric iron. The resulting mixture has magnetic properties. Conducted micro and macro experiments showed sufficient adhesion retention strength of magnetite nanoparticles in a textile material. Microscopic studies of the attachment of magnetic particles to the fibers of a textile material have been conducted. The data obtained in express mode allow us to determine the average mass of a magnetic particle in a textile material, the total number of nanoparticles, and, accordingly, to predict the magnetic force that a textile material saturated with magnetite can possess. The existence of the magnetic properties of a textile material filled with magnetite nanoparticles has been proven. A mathematical model of the dependence of the magnetic attraction force of a textile material on the distance and the number of abrasion cycles has been developed. The directions of the use of magnetic textile materials for the creation of smart clothes are proposed. Potential uses for such materials include sportswear and textiles for the disabled. The developed methods can predict the magnetic strength of the obtained textile materials and evaluate their resistance, which is necessary in the development of smart clothing elements based on these materials.
Subject
Industrial and Manufacturing Engineering,Polymers and Plastics,General Business, Management and Accounting,Business and International Management
Reference20 articles.
1. BARABÁŠ, J., BALOGOVÁ, Ľ., GÁLA, M., BABUŠIAK, B. Conductive paths and influence of theirinterconnection on tranmission of electric signal in smart clothing. Vlákna a textil, 24(4), 2017, 9–14.
2. ROGALE FIRŠT, Snježa na, ROGALE , Dubravko, NIKOLIĆ, Gojko Intelligent clothing: first and second generation clothing with adaptive thermal insulation properties. Textile Research Journal, 2018, 88(9), 2214–2233, doi: 10.1177/0040517517718190.
3. MAGNI, A. Nanotechnologies and the textile industry: the future is upon us. Tinctoria, 2004, 101(10), 60–61.
4. YEZHOVA, O.V. Prognosing development of textile nanotechnologies. Vlákna a textil, 2017, 24(4), 66–69.
5. HAN, Y., OBENDORF, S.K. Reactivity and reusability of immobilized zinc oxide nanoparticles in fibers on methyl parathion decontamination. Textile Research Journal, 2016, 86(4), 339–349, doi: 10.1177/0040517515596935.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献