Tailoring of multifunctional cotton fabric by embedding a TiO2+ZnO composite into a chitosan matrix

Author:

Tomšič Brigita,Bajrič Špela,Cergonja Kaja,Čepič Gracija,Gerl Ana,Varga Egshig Ladislav,Panoska Marina,Peulić Svjetlana,Skoko Jasna,Gorjanc Marija,Simončič BarbaraORCID

Abstract

The use of nanomaterials to functionalise textiles offers new opportunities for chemical modification of textile fibres’ surfaces to achieve multifunctional protective properties. In this study, novel coatings were tailored on cotton fabric by embedding a mixture of TiO2 and ZnO nanoparticles (NPs) of different molar ratios into a chitosan polymer matrix. The excitation energies of the TiO2+ZnO composites generated in the coatings ranged from 3.20 eV to 3.25 eV, indicating that the photocatalytic performance of the functionalised cotton was driven by UV light. The presence of TiO2+ZnO composites increased the UV protection factor (UPF) of the cotton fabric from 4.2 for the untreated sample to 15–21 for the functionalised samples. The UPF values of the coatings slightly decreased after repeated washing. The ZnO in the TiO2+ZnO composites conferred biocidal activity to the coatings, which were resistant to washing at higher ZnO concentrations. In addition, the TiO2 in the TiO2+ZnO composites was responsible for the enhanced photocatalytic self-cleaning of the functionalised cotton, which was observed during the initial period of illumination at lower ZnO concentrations in the composite. The main advantage of these TiO2+ZnO composite coatings is their multifunctionality, which cannot be provided by single-component TiO2 or ZnO coatings. Moreover, these coatings have wide-ranging practical applications, as they were composed of commercially available nanomaterials and were applied using conventional pad–dry–cure equipment.

Publisher

University of Ljubljana

Subject

Industrial and Manufacturing Engineering,Polymers and Plastics,General Business, Management and Accounting,Business and International Management

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3